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The properties of social networks have been used to explain the behaviour and
performance of diverse economic and social systems. Recently, attention has been
given to a class of network structures identified as 'small-worlds', due to their
apparent efficiency in connecting different actors through short path lengths
within a relatively sparse network. Intuitively, such network structures should also
be conducive for innovation due to better flows of information and the possibility
of new connections between skills and ideas. While there is some evidence for this
hypothesis, we urge caution in interpreting the results of small-world studies of
innovation and suggest future improvements for empirical research.

Introduction

Network analysis has a long tradition in the social sciences and the methods and
models used in research studies have become steadily more sophisticated (Marsden,
1990; Wasserman and Faust, 1994; Snijders, 2001; Watts, 2004). Unsurprisingly,
many innovation researchers have also turned to network analysis to address questions
about the innovation process because it is highly dependent upon the flow of ideas,
information and skills that create new combinations of knowledge and technology
(Collins, 1974; Allen, 1977; Freeman, 1991; Macdonald, 1998; Burt, 2005; Mors,
2010). Networks can help us understand the flows of information and ideas, the inter-
dependent connections between technologies and the diffusion of innovations.

In many instances, this network research is qualitative, but statistical methods are
also being deployed to examine the relationship between networks and innovation
(Kastelle and Steen, 2010b). While a wide variety of structural properties have been
identified as being of interest to innovation researchers, the attention paid to a class of
network structure identified by Watts and Strogatz (1998) as ‘small world’ has
perhaps generated the most widespread interest. These intriguing structures seem to
be very common in many systems and have the property of being highly connected in
terms of short steps between actors in the network, though these steps are relatively
sparse in terms of overall connections within the network (Buchanan, 2002; Watts,
2004).

It is the small world notion of small distances (or, more correctly, ‘path length’)
between anyone in a network that has received attention from many innovation
researchers. Intuitively this network structure is conducive to innovation because it
creates information ‘short-cuts’ in large networks (Cowan and Jonard, 2004). For
example, a scientist working in a community with a small world network structure
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should find it relatively easy to find an expert when faced with a new problem
(Newman, 2001). In this review, we examine the evidence for this hypothesis and also
critically evaluate the empirical methods that have been used to investigate small
worlds.

We commence by describing small world networks and the different network
systems where small worlds have been demonstrated. Next we review the evidence for
small worlds being facilitating factors in innovation. We find that while there is
compelling support for the small worlds and innovation hypothesis, great care needs
to be taken in terms of data collection, research design and the interpretation of results.
We conclude with suggestions for improving this important area of innovation
research.

Small world networks

The first academic writing on small worlds appeared in the mid-1950s in an unpub-
lished but widely circulated manuscript by Pool and Kochen (1978). Seizing upon the
common observation that unacquainted people often had common associates, they
endeavoured to show how degrees of separation (path lengths) could be modelled in
a social network (Schnettler, 2009). Following the publication of the manuscript,
Milgram (1967) took interest in the network explanation of small worlds and designed
an experiment to test the idea that small worlds exist in society and were more than
urban mythology. By asking participants to send letters to someone they did not know
in another town by addressing the letter to someone who might know the final recip-
ient, Travers and Milgram (1969) were able to show that an average of 6.4 steps was
required to reach the final destination. Despite criticism of the experimental design,
this result has entered the common lexicon in the form of ‘six degrees of separation’
(Buchanan, 2002).

Small world research gathered further momentum when Watts and Strogatz (1998)
were able to describe small worlds quantitatively using standard statistical approaches
to network analysis. It is worth describing the way that ‘small worldness’ is measured
because this has implications for interpreting results from small world studies. The
key measure, termed the ‘small world quotient’ (Q) is the clustering ratio (CC) divided
by the path length ratio (PL). In brief, clustering occurs when triangular relations form
within a network. In highly clustered networks, two nodes that are connected through
a shared third party are also highly likely to be directly connected, thus forming a
triangle. A measure of path length is produced by calculating the average number of
steps between actors within a network. In this calculation, both clustering and path
length are compared with randomly generated networks of the same number of links
and nodes. So, for example, if the CC ratio is greater than one, it means that there are
more densely linked substructures compared with a random network. If the small
world Q is greater than one, then the network could be described as a small world,
with high levels of clustering and short average path length (Watts and Strogatz,
1998).

Small world networks have since been identified in a very wide variety of
contexts, including nervous systems, power grids, film collaborations between Holly-
wood actors, and investment banking syndicates (Newman, 2003; Schnettler, 2009).
While it has been suggested that small world network structures are ubiquitous
(Buchanan, 2002), there are many examples of networks that are not small worlds. For
example, while the co-authorship network of economists from 1980 to 1999 fitted the
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small world definition (Goyal et al., 2006), the co-authorship network within sociol-
ogy from 1963 to 1999 did not (Moody, 2004). Nonetheless, the fact that small world
structures are relatively common suggests that the conditions for their formation are
not very demanding (Schnettler, 2009). In a simulation study, Robins et al. (2005,
p.923) were able to show how locally-specified processes at the actor level could
result in the creation of small worlds. In particular, small worlds were likely to form
if individuals seek more than one network partner. However, the cost of maintaining
partners is quite high so there is a tendency against very many partners. There is also
a tendency for network partners to agree upon other network partners (which encour-
ages clustering), but this tendency is neither so strong that it stops the creation of
bridging ties between clusters, nor so weak that it prevents the formation of clusters.

While more work is needed to understand how small worlds evolve, another inter-
esting direction for small world research is to show how local processes and actor
attributes affect the broader network (Guimerà et al., 2005). Longitudinal studies may
show a co-evolution of these micro and macro network variables (Baum et al., 2003;
Corrado and Zollo, 2006). For example, the existence of knowledge brokers who can
span different clusters in the network may allow the formation of small worlds, which
may then facilitate the emergence of more knowledge brokers who will enable the
network to grow without losing connectivity.

Small worlds and innovation

While Schnettler (2009) has written an overview of the development of small world
theory and research and Uzzi et al. (2007) have reviewed the contributions of small
world research to management studies more generally, our particular focus in this
essay is on the role of small world networks in the field of innovation studies. The first
published paper on small world networks in an innovation context was by Verspagen
and Duysters (2004). This paper examines a sample of technology alliances within the
chemicals and electronics industries between 1980 and 1996 using the European
MERIT CATI dataset. While the small world coefficient is not calculated, the authors
were able to describe both industrial networks as being highly clustered with a low
average path length through the network. A similar study of Italian inventors also
examined clustering and path lengths and found that the collaboration networks in the
electrical and chemicals industries were more highly connected than others (Balconi
et al., 2004). This is an interesting observation because even though the Italian study
inferred connections between inventors from patent data rather than alliances between
established firms, the results are similar to those of the MERIT CATI study. This
suggests that there are some characteristics within particular industries that support the
generation of small world networks across multiple levels.

Another study of alliances, this time in the biotechnology sector, also found
evidence for the emergence of small world networks (Gay and Dousset, 2005). In this
sample of the antibody industry, where 72% of alliances involved R&D agreements,
the industry network demonstrates persistent small world properties, despite the
changing roles of players within the network between 1990 and 2004. The robustness
of small world structures in the main component of the network also suggests that
there are aspects of the technology, and its relationship to the innovation process,
which makes small worldness a natural state of the network.

The notion of industry-specific innovation processes underlying the formation of
small worlds can be better understood following the publication of a simulation study
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by Cowan et al. (2007), who showed that small worlds could form within innovation
networks when embeddedness was a driver of alliance formation, thus creating clus-
ters. However, technological interdependencies needed to be modular enough to allow
connections to form across clusters. Embeddedness can arise through repeated inter-
actions between firms that build trust and a shared understanding, or through rela-
tional embeddedness arising from shared partners (Uzzi, 1997).

While these early studies identified the existence of small world structures in an
innovation context in relationships between firms, they did not demonstrate a relation-
ship between networks and innovation outcomes. If small world networks are very
common across many different systems, then it is plausible that the structures have
very little to do with the innovativeness of a community of actors. In the next gener-
ation of small world studies, researchers have endeavoured to show how small world
structures influence innovation performance.

The study of small worlds in the Broadway musical industry by Uzzi and Spiro
(2005) represents a significant step forward in terms of research design and analysis
of the networks over time. In this study, the authors collected historical data on collab-
orations in the creation of musicals between 1945 and 1989. Since these musicals
involve teams of creative artists, such as musicians, choreographers and playwrights,
it is possible to construct an industry-wide network based on who has worked on
different musicals in a particular time period. The dependent variable that acted as a
proxy for creativity was constructed as a combination of profitability and critics’
reviews of the musical. Uzzi and Spiro were able to show that an intermediate level
of small world Q was most closely associated with financial and artistic performance.
Thus, they argue that the relationship between Q and performance is an inverted U
shape. The strength of this relationship is significant to the point where the chances of
a hit musical arising from the network, when Q is highest, are about three times greater
than in the network where Q is at its lowest. The fact that an increasing small world
Q can be detrimental to performance was a surprising result, but it makes sense in
terms of previous findings by Granovetter (1973) on redundant information in
networks, and Burt (2004) on innovation arising from the connections between dispar-
ate groups. Densely connected networks may lack diversity and novelty, resulting in
decreased innovativeness across the network.

In a similarly designed study, Schilling and Phelps (2007) examined the network
structure of technology alliances in 11 high technology manufacturing industries
between 1990 and 1997. Innovation performance was measured by patents in these
industries, but because of the time taken between generating an idea and producing a
patent, this was measured as a lagged variable. In their model, they also controlled for
industry effects, such as the prevalence of patenting. The interaction term ‘clustering
× reach’, which captures the small world structure, was positively and significantly
(p<0.01) correlated with patents. These results were in general agreement with Uzzi
and Spiro’s (2005) Broadway study, but Uzzi and Spiro did not test for the parabolic
effect where high values of clustering and reach (i.e. low average path length) resulted
in less innovation.

Most recently, a very large sample study has tested the small world hypothesis at
the national network level using patent collaboration data from 11 countries (Chen and
Guan, 2010). Like Schilling and Phelps (2007), they found that the small world Q was
positively and significantly correlated with patents in the following year. Also, consis-
tent with the Broadway study, the authors were able to demonstrate an inverted U-
shaped relationship between both clustering and patents, and Q and patents.
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In contrast to these papers supporting the small worlds and innovation hypothesis,
some other studies have empirically challenged the notion that small worlds enhance
innovation. The most noteworthy of these is Fleming et al.’s (2007) careful analysis
of the relationship between patent co-author networks in the Boston and Silicon
Valley regions, and patent applications in the following year. While decreasing aver-
age path length across the network shows some correlation with innovation, the
authors found no linear correlation between patenting and the small world quotient.
Interestingly though, they did not include a regression model that tested for the
inverted-U relationship observed by Uzzi and Spiro (2005).

While not based on regression models, two other studies have emphasised the
importance of understanding how the network functions rather than just demonstrating
the existence of small world structures. Based on the observed small world structures
in a range of product development networks, Braha and Bar-Yam (2007) developed
simulations to test the performance of the network in response to planned and
unplanned modifications in the development process. A key to their model was the
observation that real product development networks were asymmetric, with some
nodes (product development tasks, in this instance) being aggregators and filters of
information, with limited contact with other nodes. These simulations showed that
product development small world networks performed well under planned perturba-
tions, but unplanned disruptions, particularly those that occurred in the parts of the
network that processed information, were detrimental to performance. Following a
similar theme, Kastelle and Steen (2010a) were able to show that a small world struc-
ture could be demonstrated in a network of engineers designing a large industrial
project. However, when the direction of ties in the advice and ideas network was taken
into account, it became apparent that senior project managers were playing a gate-
keeping rather than a bridging role between different parts of the network. Both of
these studies indicate that the type of interaction within the network potentially has far
greater influence on innovation than the structure of the network.

The current state of the small world and innovation hypothesis is therefore unde-
cided. However, as more research accumulates, there have been questions about the
way that some of these studies have been designed and how the results have been
interpreted. It is possible that some of the conflicting evidence results from the way
that the empirical studies were conducted. In the following section, we draw particular
attention to three core issues in small worlds and innovation research. Specifically,
these are research design, data collection and the interpretation of results.

Research design

Any research question that examines a link between networks and innovation perfor-
mance faces the persistent problem of measuring innovation (David and Foray, 1995;
Smith, 2005; Freeman and Soete, 2009). In nearly all of the studies that linked small
worlds to innovation, the dependent variable was based on patent counts. Although
there is some support for using patents as indicators of innovation (Mansfield, 1986;
Hagedoorn and Cloodt, 2003), others have suggested that the blanket use of patents to
measure innovation is fraught with validity risks (Hinze and Dodgson, 2000; Smith,
2005). The use of other measures of innovation that are more closely tailored to the
context of the study should be encouraged (e.g. Burt, 2004; Uzzi and Spiro, 2005).

One confounding factor in the relationship between patents and innovation is that
some innovations can consist of a great number of patents, while other innovations
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may contain one or fewer patents. In a study of sectoral differences in patent inten-
sity, Acs and Audretch (1988) found variations in the average patent per innovation
between 0.6 and 49 across different industries. Since patents are count data and there-
fore liable to long-tailed distributions (Cameron and Trivedi, 2005), a small number
of innovations may involve hundreds of patents. While patents may be part of an
innovation, such evidence begs the question of what is actually being measured in
patent counts. In some small world studies where networks have been derived from
patent co-authorship data, it is feasible that an industry with many patents per innova-
tion will show a very dense network as many technicians collaborate on a single inno-
vation. Subsequent patents may result from the inherent complexity of the innovation
requiring novel solutions, rather than from a cause and effect relationship between
social networks and innovation.

Confounding the relationship between patents and innovation further, Arundel and
Kabla (1998) have demonstrated a wide variation in the incidence of patenting product
and process innovations. For example, in the textile industry, 8.1% of process and
product innovations were patented compared with 79.2% of product innovations in the
pharmaceutical industry, and 46.8% of process innovations in the precision instru-
ments industry. While larger firms were more likely to patent innovations, a signifi-
cant factor in determining the likelihood of patenting was whether managers of a
particular firm thought that patents were a good way to protect intellectual property
(Arundel and Kabla, 1998). In other words, firm-specific differences in IP strategy
also distort the relationship between patents and innovation.

The problematic use of patents as a measure of innovation performance raises the
issue of endogeneity in network regression models (Hamilton and Nickerson, 2003;
Stuart and Sorenson, 2007; Bascle, 2008). A useful definition of endogeneity is when
the error term correlates with an independent variable in the regression model
(Hamilton and Nickerson, 2003). While endogeneity can arise for several reasons, the
most challenging issue when using patents as a measure of innovation performance is
that of missing variables in the model. For example, a firm’s IP strategy or technolog-
ical interdependency within the innovation (unmeasured variables) could correlate
with patents, but also affect the structure of the network.

Stuart and Sorensen (2008) suggest that network research in organisation studies
usually assumes that network structures are exogenous, with actors randomly assigned
to network positions. Actors and firms consciously make choices about partners and
clearly the assumption that network positions are exogenous ‘… is, at best question-
able and, at worst, violated in the majority of cases’ (Stuart and Sorenson, 2007,
p.217). There are three approaches that may be used to deal with the endogeneity in
network research (Stuart and Sorensen, 2007) and that may be applied to the study of
small worlds and innovation. One of these is to select instances where the network
position is genuinely exogenous. However, it is hard to envisage a situation where this
may occur when studying networks and innovation. More feasible, but more difficult
to design, is a study where network structures are linked to innovation, but the mech-
anisms that affect the evolution of the network are also modelled. Given the advances
in statistically examining mechanisms of network evolution with software packages
such as SIENA (Snijders, 2001; van de Bunt and Gronewegan, 2007), we suggest that
this is a promising research direction. Finally, econometric methods for managing
endogeneity may be deployed (Stuart and Sorenson, 2007; Bascle, 2008). The most
popular method for dealing with endogeneity in innovation research is currently the
Heckman correction, where endogeneity is treated as a self-selection problem (e.g.
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Aharonson et al., 2008), but care needs to be taken in using this approach (Bushway
et al., 2007; Bascle, 2008). Another way to deal with the endogeneity problem is to
use instrumental variables to control for endogenous regressors. In this instance, the
generalised method of moments (GMM) may be used (Windmeijer, 2000; Cameron
and Trivedi, 2005).

While we will not go into this econometric method in detail, the choice of an
instrumental variable is crucial in GMM estimations. The instrument should correlate
with the theoretically-justified missing variable (Windmeijer and Silva, 1997). For
example, in the aforementioned situation where technological interdependency (a
missing variable) could be determining network structures (independent variable) and
patenting rates (dependent variable), an instrument based upon patents per innovation
for the particular industry could be deployed. An advantage of regressions using
GMM is that the model does not assume strictly exogenous regressors, allowing the
instrument to be used as a straightforward control variable (Windmeijer, 2000;
Salomon and Shaver, 2005).

Going beyond the issues surrounding dependent variables and endogeneity,
another problem with the design of small world and innovation studies is that they
tend to treat innovation as an event rather than a process. So, for example, what does
it really mean when we say that small worlds are correlated with innovation? Are we
talking about search processes, idea generation, or product development? While some
network structures may enhance idea generation, the network structures for turning
ideas into new products may be quite different (Ohly et al., 2010). Given that the inno-
vation process is different between industries and is also in a state of flux in response
to factors such as competition and innovation technologies (Dodgson et al., 2005;
Freeman and Soete, 2009), far more care needs to be taken in describing the context
of small world studies and the type of innovation processes that may be affected by
small world networks.

Data collection

Another characteristic of small world studies of innovation is that they overwhelm-
ingly rely upon secondary data. Patent co-authorships and alliances have the obvi-
ous attraction of generating large-n datasets without the concerns and effort
surrounding surveys and interviews. However, the use of these data in network
research introduces a particular set of problems not widely discussed in published
studies. These relate to the collection of strong ties in the form of official collabora-
tions, rather than more informal networks that may have a critical role in the
innovation process.

Within social networks, the interdependencies easiest to identify are strong ties
(e.g. members of boards, a person’s wife/husband) because of their relatively stable,
structured and systemic nature (Montgomery, 1994). Conversely, weak interdepen-
dencies within a network (e.g. cartel behaviour; a friend’s friend) are harder to iden-
tify because of their inherently dynamic, quasi-random and subtle nature
(Granovetter, 1973). Since the publication of Granovetter’s (1973) article on the
strength of weak ties, it has been understood that these more transient links are more
likely to act as bridging ties between clusters. Conversely, strong ties within dense
clusters are more likely to provide closure (Burt, 2005). Focusing on the strong ties
within the network is thus likely to present us with a distorted picture of the innova-
tion process (e.g. Breschi and Catalini, 2010).
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This distortion of the innovation process has significant implications for small
world studies. The selective sampling of strong ties is likely to bias the small world
characteristics of the network. In some cases, the removal of weak ties from the
dataset may cause a network to fragment into several smaller components. Even with-
out this fragmentation, if weak ties tend to be bridging ties, then it is reasonable to
expect that the average path length will increase and clusters will appear more inde-
pendent, resulting in a spurious small world coefficient.

The problem of biasing the small world Q through missing weak ties has been
empirically studied by Shi et al. (2007). Using two real social networks, they looked
at the effect of removing weak ties and noticed a small increase in path length. In
neither case, though, did they observe widespread fragmentation of the network into
components. While this result suggests that strong tie bias does not affect the small
world coefficient to a great extent within these two networks, we suggest that future
research should check the relative importance of both strong and weak ties in specific
innovation contexts. Missing data and respondent reliability are general problems in
network research and may become significant in small world studies if researchers
rely more heavily on network surveys for data collection in future (Marsden, 1990).

One aspect of data collection and analysis often overlooked in small world studies
is disconnected components. Where there are disconnected components, the average
path length will be infinite and the small world quotient will be 0. The pragmatic solu-
tion is to analyse the largest component (Uzzi and Spiro, 2005; Fleming et al., 2007;
Chen and Guan, 2010), but this is problematic for two main reasons. One of these is
that there is evidence that innovative outputs are correlated with the size of the compo-
nent (Fleming et al., 2007). If this is the case, then sampling the largest component
will artificially inflate innovation performance. The other problem is that some indus-
tries have very fragmented networks, depending on how ties are measured. For exam-
ple, Rosenkopf and Schilling (2007) used alliance data to construct networks in
several industries. Even in technologically dynamic industries (such as engines and
turbines, household audio and video equipment, and motor vehicles), there is great
variation in the proportion of the network within the largest component. Most proba-
bly, analysing one particular component within a fragmented network and then corre-
lating it with the innovation performance of the industry will generate spurious results
(Schilling and Phelps, 2007).

Interpretation

The final problematic theme in small world studies of innovation surrounds the inter-
pretation of network data. Putting it simply, just because a network map can be
constructed does not mean that information, knowledge or other resources necessarily
flow freely in all directions along the map. As mentioned previously, actors will regu-
late and filter the interactions among other actors (Braha and Bar-Yam, 2007; Kastelle
and Steen, 2010a). In particular, if we impute ties from secondary data, such as patent
co-authorship, we have no way of knowing if a densely connected node is a dissemi-
nator or filterer of information.

This issue is taken up by Rosenkopf and Schilling (2007) in their study of small
worlds in industrial alliances. While some of their networks show clustering around
key firms in a network, ‘… these central actors may have neither the capacity nor
motivation or economic interest to share information’ (Rosenkopf and Schilling, 2007,
p.207). What appears to be a small world in a diagram may not be a small world in
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the reality of the actors being studied. One particular study from the biological
sciences has shown how networks that can be mapped as small worlds may not func-
tion as small worlds. While metabolic pathways within bacteria can be represented on
paper as small worlds, radioactive tracing of the interactions between enzymes and
metabolites shows that the metabolic network within the cell is not a small world
(Arita, 2004). It is quite possible that a similar comparison of small worlds from
industry alliance data, with surveyed responses from the industry about the actual
nature of contacts, may reveal a similar absence of small world structure.

When actors are connected by membership rather than direct contact, the overall
density of the network can be greatly inflated since the actors may not actually know
each other (Wasserman and Faust, 1994). A common example of a bipartite network
is patent co-authorships. While there may be several authors on a patent application,
some of these authors may not have actually worked together directly (Balconi et al.,
2004; Fleming et al., 2007). Uzzi and Spiro’s (2005) Broadway musical study is also
an example of bipartite network analysis. Clearly, the analysis of bipartite networks
must be different from the analysis of single-mode networks (see Newman, 2001;
Robins and Alexander, 2004).

Also, the underlying dynamics of bipartite small worlds are different from those
of single mode small world networks. Whereas highly connected people drive cluster-
ing in single mode networks, team composition drives clustering in bipartite networks
(Robins and Alexander, 2004; Uzzi et al., 2007). In other words, small worlds in
patent co-authorship may be occurring because there are many authors per patent, and
these authors are also party to other patents (Uzzi et al., 2007). Other aspects of the
industry in question, such as authors per patent and technological interdependency, are
therefore likely to influence the formation of these bipartite small worlds.

Conclusion

The past several years have seen a maturing of network analysis research within the
innovation studies field. From initial enthusiasm about the discovery of a major deter-
minant of innovation, researchers have since become more reflective about the find-
ings from their research and what it means for innovation performance. In his critique
of what he calls the ‘new social physics’, Urry (2004) warns of the temptation to
search for simple explanations of complex social processes. In the light of this warn-
ing, and based on our findings, we make three proposals about the future direction of
network analysis in innovation studies.

The first is that researchers must become more aware of endogeneity issues when
conducting this research, particularly if they are using regression analysis to correlate
network variables with innovation measures. We recommend a move away from large
network analysis. Problems surrounding causality, data collection and interpretation
are not likely to be solved with further analysis of very large datasets. Rather than
addressing the universal question of small worlds and innovation, researchers should
ask when small worlds form and under what conditions and then relate the answers to
a particular innovation context where performance can be gauged more accurately.

Moving from large network addresses would overcome the primary problems of
network variables. However, there are also significant problems with the dependent
variables used to measure innovation. There are substantial difficulties in using patent
data as a proxy for innovation, at the level of both the firm and the region. Process,
service and business model innovations are also very important economically; if we
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are to develop a better understanding of the relationships between network structures
and innovation outcomes, we need to use metrics that capture these forms of innova-
tion more effectively.

Finally, network analysis of innovation needs to move from a focus on structure to
a focus on process. There are problems with the assumption that all ties are equal. As
Granovetter (1973) originally showed, analysis that includes weak tie data may reveal
different network mechanisms to be important. Similarly, research that develops a
better understanding of the nature of the relationships within the network will provide
better insights into the interactions between network structures and innovation
outputs. In particular, greater use can be made of bipartite networks by linking actors
through their use of common meanings and shared cognitions (Cambrosio et al., 2004;
Bourret et al., 2006).

The possibility of extending small world studies to examine the relationship
between the micro and macro levels of the network is particularly exciting. For exam-
ple, how do technological interactions in virtual space affect the formation of small
worlds? How does trust and perceived social risk between individuals affect the
macro-structuring of the network – and innovation as a consequence? As Urry (2004)
has suggested, once we go beyond the relatively simple sociology of connection
implied by the majority of small world studies, we discover a rich social physics yet
to be developed.
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